Chapter 5 Review

Name the segment of the triangle.

1.
2.
3.
4.

Draw a triangle with the given information.

5. A median that is also a perpendicular bisector
6. An altitude that lies outside a triangle
7. An altitude that is a side of a triangle
8. A altitude that is also an angle bisector

Use the given information to complete the statement.

Given: \overline{ST}, \overline{TU}, and \overline{SU} are midsegments.

9. $\square \parallel \overline{TU}$.
10. If $PS = 5$, then $TU = \square$.
11. If $PR = 18$, then $SU = \square$.
12. If $SU = ST$, then $PR = \square$.
Order the sides and angles from smallest to largest.

13.

14.

15.

16.

Determine if a triangle can be constructed using sides of the following lengths.

17. 7 in., 6 in., 5 in.
18. 2 m, 9 m, 4 m

19. 6.25 cm, 10.75 cm, 17 cm
20. 7.5 m, 3.5 m, 6.5 m

The lengths of two sides of a triangle are given. The length of the third side is x. Write an inequality showing the possible lengths of the third side of the triangle.

21. 12 ft, 9 ft
22. 95 m, 55 m

23. 6.6 cm, 7.5 cm
24. 9.25 in, 5.25 in
Complete each statement with <, > or =

25. $\overline{AB} \quad \overline{BC}$

26. $\overline{TU} \quad \overline{SV}$

27. $m\angle 1 \quad m\angle 2$

28. $m\angle 1 \quad m\angle 2$

29. List the sides in order from smallest to largest.

30. List the largest angle.
31. Construct the median of $\triangle ABC$ from vertex A to side BC.

32. Construct the altitude of $\triangle ABC$ from vertex A to side BC.
33. Find the mistake in the proof and correct it.

Given: \(\overline{AM} \) is the angle bisector of \(\Delta ABC \)
\(\angle B \cong \angle C \)

Prove: \(\Delta BAM \cong \Delta CAM \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{AM}) is angle bisector of (\Delta ABC)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle BAM \cong \angle CAM)</td>
<td>Definition of angle bisector</td>
</tr>
<tr>
<td>3. (\angle B \cong \angle C)</td>
<td>Given</td>
</tr>
<tr>
<td>4. (AM \cong AM)</td>
<td>Symmetric</td>
</tr>
<tr>
<td>5. (\Delta BAM \cong \Delta CAM)</td>
<td>SSS</td>
</tr>
</tbody>
</table>

34. Given: \(\overline{AM} \) is the altitude of \(\Delta ABC \)
\(\overline{AB} \cong \overline{AC} \)

Prove: \(\Delta BAM \cong \Delta CAM \)
35. Find the mistake in the proof and correct it.

Given: \(AM \) is angle bisector of \(\angle BAC \)
\(\angle B \) is a right angle
\(\angle C \) is a right angle

Prove: \(\angle AMB \cong \angle AMC \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (AM) is the angle bisector of (\angle BAC)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (BM \cong CM)</td>
<td>Definition of (\angle) Bisector</td>
</tr>
<tr>
<td>3. (AM \cong AM)</td>
<td>Reflexive</td>
</tr>
<tr>
<td>4. (\angle B) is a right angle</td>
<td>Given</td>
</tr>
<tr>
<td>5. (\triangle BAM) is a right (\triangle)</td>
<td>Definition of a Right (\triangle)</td>
</tr>
<tr>
<td>6. (\angle C) is a right angle</td>
<td>Given</td>
</tr>
<tr>
<td>7. (\triangle CAM) is a right (\triangle)</td>
<td>Definition of a Right (\triangle)</td>
</tr>
<tr>
<td>8. (\triangle BAM \cong \triangle CAM)</td>
<td>HL</td>
</tr>
<tr>
<td>9. (\angle AMB \cong \angle AMC)</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

36.

Given: \(AM \) is the perpendicular bisector of \(BC \)

Prove: \(\angle ABM \cong \angle ACM \)